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SUMMARY 
The purpose of this paper is to predict the efficiency of the Navier-Stokes code NSS* which will run on an 
MIMD architecture parallel machine. Computations are performed using a three-dimensional overlapping 
structured multiblock grid. Each processor works with some of these blocks and exchanges data across the 
boundaries of the blocks. The efficiency of such a code depends on the number of grid points per processor, 
the amount of computation per grid point and the amount of communication per boundary point. In this 
paper we estimate these quantities for NSS* and present measurements of communication times for two 
parallel machines, the Intel Touchstone Delta machine and an Intel iPSC/860 machine, consisting of 520 
and 64 Intel i860 processors respectively. The peak performance of the Delta machine is 32 Gflop. Secondly 
it is shown how,-starting from a seven-block grid of about 5OOOOOO points for the Hermes space plane, a 
mesh of 5 12 equally sized blocks is constructed retaining the original topology. This example demonstrates 
that multiblock grids provide sufficient control over both the number and size of blocks. Therefore it will be 
possible to simulate realistic configurations on massively parallel systems with a specified number of 
processors while achieving good quality load balancing. 
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1. COMPUTATIONAL REQUIREMENTS IN AEROSPACE DESIGN 

The design and analysis of new generations of aircraft and hypersonic vehicles require accurate 
values for critical quantities. For example, a drag reduction of 0 5 %  for a new aircraft is 
considered substantial progress; surface temperatures for the European space plane Hermes must 
be known within 50 K during the re-entry phase when maximum heat flux occurs. 

The National Aerospace Plane (NASP) in the United States and the Sanger two-stage-to-orbit 
vehicle in Germany form a new generation of air-breathing vehicles which demand integration of 
the airframe and propulsion systems. Wind tunnel testing is very difficult in the extreme flight 
conditions of these vehicles,' so that their design and analysis will be based to a large extent on 
numerical simulation including viscosity, non-equilibrium chemistry and combustion. As the air 
starts to react, new species are created which are described by additional conservation equations. 
A multitemperature model may be needed to compute the vibrational temperatures of the 
diatomic species. At temperatures above 10 OOO K ionization occurs, resulting in additional 
species. Combustion models for hydrogen/air may have 16 species. 
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Hence the problem is to solve a large system of coupled non-linear PDEs in three dimensions 
with a complex geometry. In general the time scales of the flow and the chemistry are different, 
leading to a stiff system. To adequately resolve the viscous boundary layer, the grid must be 
clustered near the surface of the vehicle, leading to highly stretched meshes and thus reducing the 
convergence rate. 

For air-breathing vehicles we must also model the transition from laminar to turbulent flow. 
Turbulence modelling increases the computational cost by either calculating the turbulent 
viscosity locally or by introducing a turbulent transport model such as the k--E model ( k  is the 
turbulent energy and E the dissipation rate). The number of physical variables is also increased, 
but also more simulations are required because of the uncertainty of turbulence modelling. 

From the foregoing it is clear that such an accuracy can only be achieved with very fine meshes. 
Present calculations use 1-3 million grid points, while a satisfactory solution would really need 
10 million. We give as an example the computing time for the NSS* code for the Space Shuttle 
using 200000 points. Running on one processor of a Cray YMP, each iteration takes 8 s and 
convergence of the pressure is achieved in 2000 iterations, making a total running time of about 
5 h. Convergence of the heat flux solution would require a further factor of five. 

The total number of floating point operations for a convergent heat flux solution on a mesh of 
10 million grid points is about 5 x 1014. If a 1 Tflop machine were available with an assumed 
sustained performance of 250 Gflops (optimistic), it would take approximately 2000 s to solve the 
heat flux problem. An unsteady Navier-Stokes simulation on the same grid would take approx- 
imately 8000 s because of the reduction in CFL number. However, as mentioned above, inclusion 
of a turbulence model and non-equilibrium effects would demand a much higher computational 
effort. If aeroelasticity effects have to be accounted for, i.e. a structural code has to be coupled to 
the unsteady Navier-Stokes solver, the computational time will increase further. These calcu- 
lations are valid for a single point of the flight trajectory. To simulate a complete flight envelope, 
10-20 points may be needed. Recently, the coupling of electrodynamic effects (Maxwell's 
equations) with the Navier-Stokes equations has become a topic of research. In addition, if CFD 
is going to play a role in the aerodynamic design process, some sort of shape optimization for a 
vehicle has to be possible, demanding a new level of performance in supercomputing. 

Although from these mostly qualitative arguments it is obvious that for advanced aerospace 
applications the teraflop machine can only be the first major step to bring up CFD to a level 
where it can be used as a design tool, it is also safe to claim that the distributed memory MIMD 
architecture is highly suitable for complex aerodynamic simulations. 

2. INTERPROCESSOR COMMUNICATION 

MIMD parallel computers offer great increases in speed over conventional supercomputers and 
at a much lower cost per megaflop, but with increased software cost. Before making the effort to 
parallelize a code such as NSS*, it is of great interest to predict the inefficiency, which is defined as 

inefficiency = 1 - -, 

where P is the number of processors, Tp is the time taken to run on these P processors and TI is 
the time taken to run on a single processor. If the reasons for inefficiency are independent, 
inefficiencies may be added. Many parallel codes, including NSS*, have an inner loop structure of 
loosely synchronous cycles of computing and communicating, where the communication is 
exchanges of data between processors whose physical domains are adjacent. If this is the case, 

p TP 
TI 
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there are usually two contributions to inefficiency: load balance inefficiency and communication 
inefficiency.=, 

Load balance inefficiency occurs because the processors have different amounts of com- 
putation to perform, which for NSS* means different numbers of grid points. The algorithm then 
runs at the speed of the processor with the largest number of grid points, so the load balance 
inefficiency is the maximum number of grid points divided by the average number of grid points 
minus one. 

Communication inefficiency arises from the time taken for messages to pass between the 
processors. We first measured the communication rates between just two processors simply 
exchanging messages. The Intel NX programming environment supports two ways of receiving a 
message, crecv and irecv. A call to crecv blocks until a message has arrived and been copied into 
the buffer provided by the application code; thus an exchange of data between two processors 
consists of a csend then a crecv call. In contrast, the irecv mechanism consists of a processor first 
‘posting a receive’, nominating a buffer into which incoming messages are to be placed, then 
sending to the other processor with csend, then calling msgwait, which blocks until the expected 
message has actually been received. 

In Figure 1 we show the measured communication bandwidth for message exchange between 
two processors, in megabytes per second, against the size of the exchanged messages. The 
iPSC/860 machine achieves 2-80 Mbyte s - ’  and the Delta 9.80 Mbyte s-’  for exchange of 
messages between two adjacent processors. 

3. PARALLEL MULTIBLOCK 

The NSS* code4 uses an implicit cell-centred finite volume scheme combining an oscillation-free 
low-order scheme with a third-order MUSCL scheme by a local flux limiter function. Since the 
finite volume technique and the multiblock approach are widely used, the same or similar 
efficiency can be expected for a large class of Navier-Stokes solvers. 

The solution domain consists of a connected set of logically rectangular blocks’ in three- 
dimensional space. Each block has at most six neighbour blocks, although some at physical 
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Figure 1.  Bandwidth for message exchange between two processors with the Delta and iPSC/860 machines 
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boundaries have fewer neighbours. However, because of the complex geometry of the vehicle, the 
connectivity of these blocks is irregular. If there are fewer blocks than processors, the blocks may 
be split judiciously until each processor has one or more of the subblocks. The splitting should be 
made so that each processor is in charge of approximately equal numbers of grid points. In 
Figure 2 is shown a multiblock grid around the Hermes space plane, made with seven blocks. To 
use this grid with a massively parallel machine, with perhaps 520 processors, we must split these 
into many more smaller blocks and decide which processor is to take which of these smaller 
blocks. 

The code runs in loosely synchronous cycles of computation followed by data exchange across 
the faces of the blocks. Each processor computes with the data of its block independently of the 
others, then exchanges data with its neighbouring blocks. The exchange consists of sending 
messages to each of the neighbour blocks, where the size of each message is proportional to the 
number of grid points on the common face. The processor then waits to receive the corresponding 
messages from the neighbour processors; when these are received, the cycle starts again with the 
computation phase. The load balance inefficiency results from processors having different 
numbers of grid points and the communication inefficiency results from the time taken by 
message passing between the blocks. We should note at this point that even the sequential code 
contains a kind of communication inefficiency because of the multiblock structure; the data from 
the face of the sending block must be taken from memory and ordered, then unpacked into the 
memory associated with the receiving block. Even if no message is to be sent, such as with a 
sequential code, this packing and unpacking must still take place. 

Figure 3 shows a logical or computational view of the seven blocks from Figure 2 with their 
connectivity and the numbers of grid points in each direction, The total grid size is 4 160000, 
obtained by multiplying together the numbers of grid points for each block and summing over the 
seven blocks. The thick lines connecting the blocks indicate that two blocks have the same grid 
dimensions on the corresponding faces, which is necessary to guarantee a slope-continuous grid. 
Figure 4 shows the way in which this seven-block grid may be split into 512 subblocks. We have 
chosen 512 processors because this is just less than the 520 processors of the Intel Touchstone 
Delta machine. Each of the line textures in this figure represents a different way of splitting the 
grid, there being five splitting planes in all, includng the splitting on the radial direction. With the 
splitting as shown, each block has size 25 x 25 x 13, with 13 grid points in the radial direction. By 

Figure 2. A seven-block grid around the Hermes space plane 
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Figure 4. Subdivision of the seven-block grid into 64 equal subblocks. A further splitting in the radial direction produces 
512 equal subblocks 

splitting only four instead of eight times in the radial direction, we could also make 256 blocks of 
size 25 x 25 x 26. 

4. COMMUNICATION MODELLING 

In addition to the block of data owned by each processor, there are two surrounding layers of 
‘ghost’ points as shown in Figure 5. These ghost points are updated by the message-passing phase 
of the calculation and provide data continuity from the neighbour block for the computation. 
There are two layers of these ghost points because of the third-order nature of the solution scheme 
used by NSS*. 

If the processors have different numbers of grid points, we may expect some load balance 
inefficiency; indeed, we expect that the time for the computational phase of the algorithm cycle is 
determined by the processor with the largest number of grid points. The splitting of the Hermes 
grid discussed above has the same number of grid points in each block, so that inefficiency results 
only from the communication part of the cycle. If the computational time is more accurately 
modelled, we must include the time taken to prepare and interpret the outgoing and incoming 
messages. This time is different for the different blocks because interior blocks have six neigh- 
bouring blocks whereas those at the physical boundary may only have one or two neighbours. 
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Figure 5. A block of grid points surrounded by two layers of ghost points 

For the purpose of estimating efficiency, we need to know some information about the 
algorithm: 

N ,  the total number of grid points 
P, the number of processors being used 
F ,  the number of floating point operations (flops) per grid point per iteration 
B, the number of bytes per grid point to be exchanged between blocks. 

We also need some information about the machine on which the algorithm is to run: 

Tflop, the time for a processor to do a flop 
Tcube, the time per byte for a cubic exchange. 

Since the blocks are equal, each block contains NIP points. Thus we may define the linear 
dimension of each block to be l=(N/P)'I3.  The amount of data to be communicated for each 
block is then 12BP per iteration; a factor two comes from the two layers of grid points to be 
exchanged at each face and a factor six because each block has at most six faces. The number of 
flops per iteration is F13. Thus the communication inefficiency is then the communication time 
divided by the computation time, which is 

For the NSS* code the algorithm parameters might be estimated as follows. As noted in 
Section 3, we take N = 4 160 000 and P = 512, so that I = 20. The number of flops per grid point per 
iteration is about F=5000 for this low-/high-order code with a real gas model. The data 
exchanged across the boudaries are the five primitive variables (density, energy and three 
components of momentum), so that B = 5 words = 40 bytes. We have taken the time for a floating 
point operation to be TfIOp=O.2 p, corresponding to a conservative 5 Mflops for the i860 
processor. The computation time per cycle is thus FI3 Tflop = 8 s. 

We have measured Tcube with the following model of the parallel NSS* code. Our model 
consists of a cubic lattice of equal blocks, so that each processor has exactly the same number of 
grid points. Each block has six faces and on the other side of each face there may or may not be 
another processor. 

To simulate the irregularity caused by the geometry of the solution domain, we have made 
random assignments of the blocks to the processors of the machine. Clearly, random assignment 
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is not optimal; there are schemes6 for assignment of processors to blocks which tend to place 
adjacent blocks in adjacent processors, and such a scheme would presumably improve the 
communication performance. 

Figure 6 shows the resuls for bandwidth. For the parameters given above, the number of bytes 
to be exchaged at each face is 12H2 =0.192 Mbyte, so that Tcube is 0.16 s on 512 processors of the 
Delta machine. 

Thus our measurements predict that each iteration of the NSS* code with 4 million grid points 
takes about 8 s, of which about 0.16 s is taken with communication, resulting in an efficiency of 
over 95% with 512 processors of the Delta machine. 

5. CONCLUSIONS 

The communication timings indicate that a complex practical calculation, such as the accurate 
solution of the Navier-Stokes equations with a complex geometry, can be expected to run on a 
massively parallel machine with high efficiency. There are four main reasons for this high 
predicted efficiency. 

Complex algorithm. Solving the Navier-Stokes equations rather than the simpler Euler 
equations means that derivatives of the physical fields are required, increasing the computation 
per grid point. Furthermore, using a real gas model rather than an ideal gas, as well as the use of 
simultaneous low- and high-order schemes and the semi-implicit naure of the code all increase the 
amount of computation per grid point and hence improve the efficiency. 

Hardware speed. We have made preliminary measurements of the communication rate on the 
Intel Touchstone Delta machine, the result being an increase of a factor of 3.5 over the older 
generation iPSC/860 machine. 

Memory. Each processor of the Delta machine has a memory of 16 Mbytes, so that each 
processor may work on a large block, thus reducing the surface-area-to-volume ratio of the block 
and decreasing the amount of communication relative to calculation. 
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Figure 6. Bandwidth for cubic exchange. The width of the band shows minimum and maximum values for different 
random assignments of processors to blocks 
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Grid partitioning. Besides inefficiency caused by communication overhead, the code would also 
be inefficient if the processors were unbalanced by having different numbers of grid points in each. 
We have shown that it is possible to split a seven-block grid into 512 equal subblocks so that this 
cause of inefficiency is eliminated. Furthermore, it is possible to make this splitting such that the 
subblocks have reasonably low surface-area-to-volume ratios so that the communication in- 
efficiency is low. 
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